

A Short Total Synthesis of (\pm) -Epimeloscine and (\pm) -Meloscine Enabled by a Cascade Radical Annulation of a Divinylcyclopropane

Hanmo Zhang and Dennis P. Curran*

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

Supporting Information

ABSTRACT: The first stereoselective synthesis of epimeloscine has been accomplished in 13 total steps with a longest linear sequence of 10 steps. The core of the synthesis takes only five steps, the key ones being acylation, stereoselective tandem radical cyclization of a divinylcyclopropane to make two rings, and group-selective ring-closing metathesis of the resulting divinylcyclopentane to make the last ring.

eloscine (1) is the parent of a small but important group of Melodinus alkaloids (Figure 1).¹ It is thought that in nature, 1 and its less stable epimer epimeloscine (2) arise from scandine (3) by hydrolysis and decarboxylation. In turn, scandine arises from 18,19-dehydrotabersonine (4) by expansion of the B ring and contraction of the C ring.²

The highly functionalized C ring of meloscine with its four stereocenters (two of which are quaternary) presents a significant synthetic challenge. Overman met this challenge in 1989 with a 22-step synthesis featuring a classic example of the aza-Cope Mannich reaction.³ Appealing syntheses of meloscine have been reported by Bach in 2008⁴ and very recently by Mukai.⁵ Bach made (+)-meloscine through key intermediate 5a, which was made by [2+2] cycloaddition and ring expansion to construct rings B and C. Mukai made intermediate 5b by a Pauson-Khand cyclization. Both Bach and Mukai ultimately made the E ring of meloscine by a ring-closing metathesis (RCM) reaction, but the sequences from 5a and 5b to the natural product took 10-11 steps.

The elegant syntheses of Bach and Mukai illustrate the challenge of late introduction of the E ring with its C5 quaternary stereocenter. Herein we report an exceptionally short synthesis of the meloscines in which the B and C rings of an ABCD-ring product are constructed in a single step by a cascade radical annulation of a divinylcyclopropane. The subsequent synthesis of the E ring is then expedited by the presence of the two vinyl groups that are essential for the radical cascade. As a bonus, the sequence produces exclusively (\pm) -epimeloscine, which is readily epimerized to (\pm) -meloscine.^{1a}

Figure 2 shows our retrosynthetic analysis. Meloscine (1) and epimeloscine (2) should be readily available from 6 by an RCM end game à la Bach and Mukai but in just a few short steps (removal of the protecting group, N-allylation, RCM). Divinylcyclopentane 6 is the direct product of the cascade radical annulation of divinylcyclopropane 7. In turn, 7 is formed by acylation of aniline 8 by acid 9. Our recent work on radical cyclizations and oalkenyl anilides⁶ and the early studies of radical annulations of monovinylcyclopropanes by several groups^{7,8} supported the feasibility of this retrosynthetic analysis.

Figure 1. Structures of meloscine alkaloids and key synthetic intermediates of Bach and Mukai.

Figure 2. Retrosynthetic analysis of meloscines based on RCM, a radical cascade, and acylation.

Divinylcyclopropanecarboxylic acid 9 was readily prepared in five steps, as summarized in Scheme 1. Rhodium(II)-catalyzed cyclopropanation of bisbenzyl ether 10 provided trisubstituted cyclopropane 11 in 66% yield. Hydrogenation of 11 with Pearlman's catalyst followed by TEMPO oxidation of the resulting crude diol afforded dialdehyde 12 in 86% yield. Double Wittig reaction of 12 followed by hydrolysis of the crude product produced acid 9 in 60% yield over two steps.

The completion of the synthesis is shown in Scheme 2. We initially pursued a traditional strategy with a protecting group on the anilide nitrogen. Aniline 13b(R = H) is a known compound that

```
Received:
           May 10, 2011
Published: June 13, 2011
```

Scheme 1. Five-Step Synthesis of Divinylcyclopropanecarboxylic Acid 9

Scheme 2. Five- and Six-Step Syntheses of (\pm) -Epimeloscine and (\pm) Meloscine from Acid 9 and Aniline 13b

was prepared in three steps⁹ (see the Supporting Information) and then benzylated under standard conditions to provide **13a** (R = Bn) in 73% yield. Acid chloride **14** was prepared in situ from **9** with Ghosez reagent [Me₂C=C(Cl)NMe₂],¹⁰ after which aniline **13a** was added to provide **15a** in 83% yield. Importantly, this key precursor was expected to exist predominantly as the shown *E* rotamer,¹¹ predisposing it to undergo the first radical cyclization.¹²

Syringe pump addition of tributyltin hydride (2 equiv) and AIBN to a refluxing solution of **15a** in toluene provided **16a** in 55% yield after purification to remove the tin residues. This sole stereoisomer has the epimeloscine configuration at C3.

Construction of the E ring then followed on cue by removal of the N-Boc group with TFA, subsequent N-allylation to provide **17a**,

and finally RCM with the second-generation Grubbs—Hoveyda catalyst. As expected on the basis of ring strain,⁵ only one of the two diastereotopic vinyl groups was engaged to provide pentacycle **18a** in 94% yield. The synthesis then hit a minor roadblock when several pilot reactions to make epimeloscine by debenzylation of **18a** were unsuccessful.

Faced with the apparent choice of scaling up to make more **18a** for renewed tries of debenzylation or changing the N-protecting group to something easier to remove, we decided to do neither. Instead, we attempted to remove the N-protecting group entirely. This cut two steps from the synthesis, but there was uncertainty because anilide **15b** has a *Z* ground-state geometry,¹¹ so its derived radical would not be predisposed for cyclization.¹² We elected this option since it was easy to prepare **15b**.

Indeed, acylation of aniline **13b** using acid **9** and Ghosez's reagent as before provided **15b** in 77% yield. Syringe pump addition of tin hydride to **15b** under the conditions optimized for **15a** provided ABCD tetracycle **16b** in 38% yield after careful purification. Removal of the Boc group and N-allylation provided **17b** in 73% yield. RCM as described above then directly provided the natural product (\pm)-epimeloscine (**2**) in 89% yield.^{1a,c} Overman produced epimeloscine in his classic synthesis,³ but it came from a minor stereoisomer (<10%) of a mixture on the way to meloscine. Thus, this is the first stereoselective synthesis of epimeloscine (**1**) in 83% yield.

In summary, we have achieved the first stereoselective synthesis of (\pm) -epimeloscine (2) with a longest linear sequence of just 10 steps in ~6% overall yield. (\pm) -Meloscine (1) is readily produced from 2 by epimerization. The core part of the synthesis, which involves coupling of two simple precursors (13b and 9) followed by rapid formation of rings B and C (in tandem) and then ring E (Scheme 2), takes just five steps and proceeds in almost 20% overall yield. There is room for improvement because the yield of the radical cyclization (38%) was unoptimized. This core sequence features no oxidations, no reductions, no functional-group transformations, and only one deprotection (removal of the N-Boc group). The use of a divinylcyclopropane in the cascade radical annulation to make the B and C rings paves the way for immediate construction of ring E to complete the synthesis.

ASSOCIATED CONTENT

Supporting Information. Complete experimental details and copies of NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author curran@pitt.edu

ACKNOWLEDGMENT

We thank the National Institutes of Health (NIGMS P50-GM067082) and the National Science Foundation for funding of this work. This paper is dedicated to Professor Barry M. Trost on the occasion of his 70th Birthday.

REFERENCES

(1) (a) Bernauer, K.; Englert, G.; Vetter, W.; Weiss, E. Helv. Chim. Acta 1969, 52, 1886–1905. (b) Oberhaensli, W. E. Helv. Chim. Acta 1969, *52*, 1905–1911. (c) Daudon, M.; Mehri, H.; Plat, M. M.; Hagaman, E. W.; Schell, F. M.; Wenkert, E. *J. Org. Chem.* **1975**, *40*, 2838–2839.

(2) Szabó, L. F. ARKIVOC 2007, No. vii, 280–290.

(3) (a) Overman, L. E.; Robertson, G. M.; Robichaud, A. J. J. Org. Chem. **1989**, 54, 1236–1238. (b) Overman, L. E.; Robertson, G. M.; Robichaud, A. J. J. Am. Chem. Soc. **1991**, 113, 2598–2610.

(4) (a) Selig, P.; Bach, T. Angew. Chem., Int. Ed. 2008, 47, 5082–5084.
(b) Selig, P.; Herdtweck, E.; Bach, T. Chem.—Eur. J. 2009, 15, 3509–3525.

(5) Hayashi, Y.; Inagaki, F.; Mukai, C. Org. Lett. 2011, 13, 1778–1780.

(6) Guthrie, D. B.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2009, 131, 15492–15500.

(7) Walton, J. C. Houben-Weyl Methods Org. Chem. 1997, E17c, 2438–2525.

(8) (a) Miura, K.; Fugami, K.; Oshima, K.; Utimoto, K. *Tetrahedron* Lett. 1988, 29, 5135–5138. (b) Feldman, K. S.; Ruckle, R. E.; Romanelli, A. L. *Tetrahedron Lett.* 1989, 30, 5845–5848. (c) Feldman, K. S.; Burns, C. J. J. Org. Chem. 1991, 56, 4601–4602. (d) Singleton, D. A.; Huval, C. C.; Church, K. M.; Priestley, E. S. *Tetrahedron Lett.* 1991, 32, 5765–5768.
(e) Chuang, C. P.; Hou, S. S.; Ngoi, T. H. J. J. Chem. Res., Synop. 1991, 216–217. (f) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.; Jean, G. J. Org. Chem. 1992, 57, 100–110. (g) Bertrand, M. P.; Nouguier, R.; Archavlis, A.; Carriere, A. Synlett 1994, 736–738. (h) Herbert, N.; Pattenden, G. Synlett 1997, 69–70. (i) De Boeck, B.; Herbert, N. M. A.; Harrington-Frost, N. M.; Pattenden, G. Org. Biomol. Chem. 2005, 3, 328–339.

(9) Nicolaou, K. C.; Krasovskiy, A.; Majumder, U.; Trépanier, V. É.; Chen, D. Y. K. J. Am. Chem. Soc. **2009**, 131, 3690–3699.

(10) Haveaux, B.; Dekoker, A.; Rens, M.; Sidani, A. R.; Toye, J.; Ghosez, L. *Organic Syntheses*; Wiley: New York, 1988; Collect. Vol. VI, pp 282–289.

(11) (a) Stewart, W. E.; Siddall, T. H. *Chem. Rev.* 1970, 70, 517–551.
(b) Saito, S.; Toriumi, Y.; Tomioka, N.; Itai, A. J. Org. Chem. 1995, 60, 4715–4720. (c) Curran, D. P.; Hale, G. R.; Geib, S. J.; Balog, A.; Cass, Q. B.; Degani, A. L. G.; Hernandes, M. Z.; Freitas, L. C. G. *Tetrahedron: Asymmetry* 1997, *8*, 3955–3975.

(12) (a) Stork, G.; Mah, R. *Heterocycles* **1989**, *28*, 723–727. (b) Curran, D. P.; Tamine, J. J. Org. Chem. **1991**, *56*, 2746–2750.

■ NOTE ADDED AFTER ASAP PUBLICATION

This article was published ASAP on June 16, 2011. Figure 1 was updated and a dedication was added to the Acknowledgment. The corrected version was posted on June 20, 2011.